GENERAL INFORMATION

AC200+[™]

Acrylic Injection Adhesive Anchoring System and Post-Installed Reinforcing Bar Connections

PRODUCT DESCRIPTION

The AC200+ is a two-component, high strength adhesive anchoring system. The system includes injection adhesive in plastic cartridges, mixing nozzles, dispensing tools and hole cleaning equipment. The AC200+ is designed for bonding threaded rod and reinforcing bar hardware into drilled holes in concrete base materials and for post-installed reinforcing bar connections.

GENERAL APPLICATIONS AND USES

- · Bonding threaded rod and reinforcing bar into hardened concrete
- · Evaluated for installation and use in dry and wet concrete
- Fast curing system which can be installed in a wide range of base material temperatures; qualified for structural applications in concrete and masonry as low as 14°F (-10°C)
- Qualified for seismic (earthquake) and wind loading

FEATURES AND BENEFITS

- + Designed for use with threaded rod and reinforcing bar hardware elements
- + Evaluated and recognized for freeze/thaw performance
- + Versatile system which can be used in a wide range of embedments in low and high strength concrete
- + Cartridge design allows for multiple uses using extra mixing nozzles
- + Mixing nozzles proportion adhesive and provide simple delivery method into drilled holes
- + Evaluated and recognized for long term and short term loading (see performance tables)

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES) ESR-4027 for cracked and uncracked concrete
- Code Compliant with the International Building Code/International Residential Code: 2018 IBC/IRC, 2015 IBC/IRC, 2012 IBC/IRC, and 2009 IBC/IRC
- Tested in accordance with ACI 355.4, ASTM E488, and ICC-ES AC308 for use in structural concrete (Design according to ACI 318-14, Chapter 17 and ACI 318-11/08 Appendix D)
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading
- Compliant with NSF/ANSI 61 for drinking water system components health effects; minimum requirements for materials in contact with potable water and water treatment
- Conforms to requirements of ASTM C881 and AASHTO M235, Types I, II, IV and V, Grade 3, Class A
- Department of Transportation listings see www.DEWALT.com or contact transportation agency

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, and 05 05 19 Post-Installed Concrete Anchors. Adhesive anchoring system shall be AC200+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and requirements of the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	1
Strength Design (SD)	2
Installation Instructions (Solid Base Materials)	17
Installation Instructions (Post-Installed Rebar)	18
Reference Installation Tables	19
Ordering Information	20

PACKAGING

Coaxial Cartridge

• 9.5 fl. oz.

Dual (side-by-side) Cartridge

• 28 fl. oz.

STORAGE LIFE & CONDITIONS

Dual cartridge: Eighteen months Coaxial cartridge: Eighteen months In a dry, dark environment with temperature ranging from 41°F to 90°F (5°C to 32°C)

ANCHOR SIZE RANGE (TYPICAL)

- 3/8" to 1-1/4" diameter threaded rod
- No. 3 to No. 10 reinforcing bar (rebar)
- 10M to 30M reinforcing bar (CA rebar)

SUITABLE BASE MATERIALS

- Normal-weight concrete
- Lightweight concrete

PERMISSIBLE INSTALLATION CONDITIONS (ADHESIVE)

- Dry concrete
- Water-saturated concrete (wet)
- Water-filled holes

Acrylic Injection Adhesive Anchoring Systen

AC200+

STRENGTH DESIGN (SD)

Installation Specifications for Threaded Rod and Reinforcing Bar¹

Dimension/Property	Notation	Units		Nominal Anchor Size															
Threaded Rod	-	-	3/8	-		1/2	-	5/8	-	-	3/4	-	7/8	-	1	-	-	1-1/4	-
Reinforcing Bar	-	-	-	#3	10M	-	#4	-	#5	15M	#6	20M	#7	25M	#8	#9	30M	-	#10
Nominal anchor diameter	da	in. (mm)	0.3 (9		0.445 (11.3)		500 2.7)	0.6 (15	625 6.9)	0.630 (16.0)	0.750 (19.1)	0.768 (19.5)	0.875 (22.2)	0.992 (25.2)	1.000 (25.4)	1.125 (28.6)	1.177 (29.9)		250 .8)
Nominal ANSI drill bit size	do [dbit]	in.	7/16 ANSI	1/2 ANSI	9/16 ANSI	9/16 ANSI	5/8 ANSI	11/16 ANSI	3/4 ANSI	3/4 ANSI	7/8 ANSI	1 ANSI	1 ANSI	1-1/4 ANSI	1-1/8 ANSI	1-3/8 ANSI	1-1/2 ANSI	1-3/8 ANSI	1-1/2 ANSI
Minimum embedment	hef,min	in. (mm)	2-3 (6	3/8 0)	2.8 (70)		3/4 '0)	3- ⁻ (7	1/8 9)	3.1 (80)	3-1/2 (89)	3.5 (90)	3-1/2 (89)	3.9 (100)	4 (102)	4-1/2 (114)	4.7 (120)		5 27)
Maximum embedment	hef,max	in. (mm)	7- ⁻ (19	1/2 91)	8.9 (225)		0 54)		1/2 18)	12.6 (320)	15 (381)	15.4 (390)	17-1/2 (445)	19.8 (505)	20 (508)	22-1/2 (572)	23.5 (600)		!5 35)
Minimum concrete member thickness	h _{min}	in. (mm)			_{ef} + 1-1/ (h _{ef} + 30								hef +	- 2d₀					
Minimum spacing distance	Smin	in. (mm)	1-7 (4	7/8 ·8)	2 (50)		1/2 52)	(7		3.2 (80)	3-5/8 (92)	3.9 (100)	4-1/4 (108)	4.9 (125)	4-3/4 (121)	5-1/4 (133)	5.9 (150)		7/8 49)
Minimum edge distance (100% T _{max})	Cmin	in. (mm)	1-5 (4	5/8 1)	1.7 (45)		3/4 4)	(5		2.2 (55)	2-3/8 (60)	2-3/8 (60)	2-1/2 (64)	2.7 (70)	2-3/4 (70)	3 (75)	3 (75)		1/4 60)
Maximum Torque ³	T _{max}	ft-lbs	1	5⁴	-	3	0	4	4	-	66	66	96	-	147	185	-	22	21
Minimum edge distance, reduced ^{24,5} (45% T _{max})	Cmin,red	in (mm)		_	-		-	1-3 (4	3/4 5)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	2-3/4 (70)	2-3/4 (70)		3/4 '0)
Maximum Torque, reduced ³	Tmax,red	ft-lbs	7	7	-	1	4	2	0	-	30	-	43	-	66	83	-	9	19

1. For use with the design provisions of ACI 318-14 Ch. 17 or ACI 318-11 Appendix D as applicable, ICC-ES AC308, Section 4.2 and ESR-4027.

2. For No. 8 rebar an 1-1/4" ANSI drill bit is also suitable for use.

3. Torque may not be applied to the anchors until the full cure time of the adhesive has been achieved.

4. For ASTM A36/F1554 Grade 36 carbon steel threaded rods with 3/8-inch-diameter, Tmax = 11 ft.-lbs.

5. For installations at the reduced minimum edge distance, cmin,red, the maximum toque applied must be max torque reduced, Tmax,red.

6. For installations at the reduced minimum edge distance, $c_{min,red}$, the miminim spacing, $s_{min} = 5 x da$.

s

Detail of Steel Hardware Elements used with Injection Adhesive System

Threaded Rod or Rebar		C Tmax	-	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} $	Threaded Rod or Rebar		 	
		<i>p</i> ∇ + D <i>p</i>	1	C

Threaded Rod	and Deformed Rein	forcing Bar Mat	erial Propert	ies
Steel Description (General)	Steel Specification	Nominal Anchor Size	Minimum Ultimate Strength fu psi (MPa)	Minimum Yield Strength fy psi (MPa)
	ASTM A36 or F1554, Grade 36		58,000 (400)	36,000 (250)
	ASTM F1554 Grade 55	3/8" through 1-1/4"	75,000 (517)	55,000 (380)
	ASTM A193 Grade B7	5/6 tillougit 1-1/4	125,000 (860)	105,000 (724)
Carbon Rod	ASTM F1554 Grade 105		125,000 (860)	105,000 (724)
	ASTM A449	3/8" through 1"	120,000 (828)	92,000 (635)
	ASTM A449	1-1/4"	105,000 (720)	81,000 (560)
	ASTM F568M Class 5.8	3/4" through 1-1/4"	72,500 (500)	58,000 (400)
	ASTM F593 CW1	3/8" through 5/8"	100,000 (690)	65,000 (450)
Stainless Rod (Alloy 304 / 316)	ASTM F593 CW2	3/4" through 1-1/4"	85,000 (590)	45,000 (310)
	ASTM A193/A193M Grade B8/B8M2, Class 2B	3/8" through 1-1/4"	95,000 (655)	75,000 (515)
Grade 60	ASTM A615, A767, A996 Grade 60	3/8" through 1-1/4"	90,000 (620)	60,000 (414)
Reinforcing Bar	ASTM A706 Grade 60	(#3 through #10)	80,000 (550)	60,000 (414)
Grade 40 Reinforcing Bar	ASTM A615 Grade 40	3/8" through 3/4" (#3 through #6)	60,000 (415)	40,000 (275)
Grade 400 Metric Reinforcing Bar (CA)	CAN/CSA G30.18	10M through 30M	78,300 (540)	58,000 (400)

ADHESIVES

Steel Tension and Shear Design for Threaded Rod in Normal Weight Concrete (For use with load combinations taken from ACI 318-14 Section 5.3)

						Nominal	Rod Diamete	er' (inch)				
	Design Information	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4		
			inch	0.375	0.500	0.625	0.750	0.875	1.000	1.250		
Threaded rod	nominal outside diameter	d	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(31.8)		
Threaded rod	effective cross-sectional area	Ase	inch ²	0.0775	0.1419	0.2260	0.3345	0.4617	0.6057	0.9691		
		Ase	(mm²)	(50)	(92)	(146)	(216)	(298)	(391)	(625)		
	Newsian strongth as as several but	Nsa	lbf (kN)	4,495	8,230	13,110	19,400	26,780	35,130	56,210		
ASTM A 36	Nominal strength as governed by steel strength (for a single anchor)		(KIN) Ibf	(20.0) 2,695	(36.6) 4,940	(58.3) 7,860	(86.3)	(119.1) 16,070	(156.3) 21,080	(250.0) 33,725		
and		Vsa	(kN)	(12.0)	(22.0)	(35.0)	(51.8)	(71.4)	(93.8)	(150.0)		
Grade 36	STM F 1554 Reduction factor for seismic shear		-	(()	(00.0)	0.60	()	(00.0)	()		
Grade 50	Strength reduction factor for tension ²	ϕ	-				0.75					
	Strength reduction factor for shear ²	ϕ	-				0.65					
	Newsian strength as several by	Nsa	lbf (kN)	5,810 (25.9)	10,640	16,950 (75.4)	25,085 (111.6)	34,625 (154.0)	45,425 (202.0)	72,680 (323.3)		
	Nominal strength as governed by steel strength(for a single anchor)		lbf	3,485	(47.3) 6,385	10,170	15,050	20,775	27,255	43,610		
ASTM F 1554		Vsa	(kN)	(15.5)	(28.4)	(45.2)	(67.0)	(92.4)	(121.2)	(194.0)		
Grade 55	Reduction factor for seismic shear	OlV,seis	- 1				0.60					
	Strength reduction factor for tension ²	ϕ	-				0.75					
	Strength reduction factor for shear ²	ϕ	-				0.65					
	Naminal atranath as asymptotic by	Nsa	lbf (kN)	9,685 (43.1)	17,735 (78.9)	28,250 (125.7)	41,810 (186.0)	57,710 (256.7)	75,710 (336.8)	121,135 (538.8)		
ASTM A 193 Grade B7	Nominal strength as governed by steel strength (for a single anchor)		lbf	5,815	10,640	16,950	25,085	34,625	45,425	72,680		
and		V _{sa}	(kN)	(25.9)	(7.3)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)		
ASTM F 1554	Reduction factor for seismic shear	OlV,seis	- 1				0.60					
Grade 105	Strength reduction factor for tension ²	ϕ	-				0.75					
	Strength reduction factor for shear ²	ϕ	-			07.400	0.65		70.005			
	Nominal strength as	Nsa	lbf (kN)	9,300 (41.4)	17,025 (75.7)	27,120 (120.6)	40,140 (178.5)	55,905 (248.7)	72,685 (323.3)	101,755		
	governed by steel strength		lbf	5,580	10,215	16,270	24,085	33,540	43,610	(452.6) 61,050		
ASTM A 449	(for a single anchor)	V _{sa}	(kN)	(24.8)	(45.4)	(72.4)	(107.1)	(149.2)	(194.0)	(271.6)		
	Reduction factor for seismic shear	OlV,seis	-		• • •		0.60					
	Strength reduction factor for tension ²	ϕ	-				0.75					
	Strength reduction factor for shear ²	φ	-				0.65	0.0 175	10.015	70.000		
	Naminal atranath as asymptotic by	Nsa	lbf (kN)	5,620 (25.0)	10,290 (45.8)	16,385 (72.9)	24,250 (107.9)	33,475 (148.9)	43,915 (195.4)	70,260 (312.5)		
	Nominal strength as governed by steel strength (for a single anchor)		lbf	3,370	6,175	9,830	14,550	20,085	26,350	42,155		
ASTM F 568M		V _{sa}	(kN)	(15.0)	(27.5)	(43.7)	(64.7)	(89.3)	(117.2)	(187.5)		
Class 5.8	Reduction factor for seismic shear	OlV,seis	-				0.60					
	Strength reduction factor for tension ²	ϕ	-				0.65					
	Strength reduction factor for shear ²	ϕ	-				0.60	00.045	54 405	00.070		
	Naminal atranath as asymptotic by	Nsa	lbf (kN)	7,750 (34.5)	14,190	22,600 (100.5)	28,430 (126.5)	39,245 (174.6)	51,485 (229.0)	82,370		
ASTM F 593	Nominal strength as governed by steel strength (for a single anchor)		lbf	4,650	(63.1) 8,515	13,560	17,060	23,545	30,890	(366.4) 49,425		
CW Stainless		Vsa	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)	(219.8)		
(Types 304 and 316)	Reduction factor for seismic shear	O(V,seis	- 1				0.60			//		
anu STO)	Strength reduction factor for tension ²	φ	-	0.65								
	Strength reduction factor for shear ²	ϕ	-	7.005	10.400	04.470	0.60	40.000	57.545	00.005		
ASTM A 193	Nominal atranath as sourced by	N _{sa}	lbf (kN)	7,365 (32.8)	13,480 (60,0)	21,470 (95.5)	31,775 (141,3)	43,860	57,545 (256.0)	92,065 (409.5)		
Grade B8/ B8M2,	Nominal strength as governed by steel strength (for a single anchor)		l (KIN) Ibf	4.420	8.085	(95.5)	19.065	(195.1) 26,315	(256.0) 34,525	(409.5) 55,240		
Class 2B		Vsa	(kN)	(19.7)	(36.0)	(57.3)	(84.8)	(117.1)	(153.6)	(245.7)		
Stainless	Reduction factor for seismic shear	O(V,seis	-	()	(/		0.60		()	(= · - · ·)		
(Types 304												
and 316)	Strength reduction factor for shear ²	ϕ	-				0.65					

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

Values provided for steel element material types are based on minimum specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (

2. The tabulated value of \u03c6 applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of \u03c6 must be determined in accordance with ACI 318 D.4.4.

Steel Tension and Shear Design for Reinforcing Bars in Normal Weight Concrete (For use with load combinations taken from ACI 318-14 Section 5.3)

ENGINEERED BY POWERS

						Nomina	I Reinforcin	g Bar Size ((Rebar)			
	Design Information	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	
Rebar nomir	nal outside diameter	d	inch (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.7)	1.250 (32.3)	
Rebar effect	tive cross-sectional area	A _{se}	inch² (mm²)	0.110 (71.0)	0.200 (129.0)	0.310 (200.0)	0.440 (283.9)	0.600 (387.1)	0.790 (509.7)	1.000 (645.2)	1.270 (819.4)	
	Nominal strength as governed by	N _{sa}	lbf (kN)	9,900 (44.0)	18,000 (80.1)	27,900 (124.1)	39,600 (176.1)	54,000 (240.2)	71,100 (316.3)	90,000 (400.3)	114,30 (508.4)	
ASTM A615, A767, A996 Grade 60	ASTM A615, A767, A996		lbf (kN)	5,940 (26.4)	10,800 (48.0)	16,740 (74.5)	23,760 (105.7)	32,400 (144.1)	42,660 (189.8)	54,000 (240.2)	68,580 (305.0)	
GIAUE OU	Reduction factor for seismic shear	<i>O</i> ℓV,seis	-	0.65								
	Strength reduction factor for tension ²	ϕ	-	0.65								
	Strength reduction factor for shear ²	ϕ	-	0.60								
	Nominal strength as governed by	Nsa	lbf (kN)	8,800 (39.1)	16,000 (71.2)	24,800 (110.3)	35,200 (156.6)	48,000 (213.5)	63,200 (281.1)	80,000 (355.9)	101,60 (452.0)	
ASTM A706	steel strength (for a single anchor)	V _{sa}	lbf (kN)	5,280 (23.5)	9,600 (42.7)	14,880 (66.2)	21,120 (94.0)	28,800 (128.1)	37,920 (168.7)	48,000 (213.5)	60,960 (271.2)	
Grade 60	Reduction factor for seismic shear	<i>O</i> ℓv,seis					0.	65				
	Strength reduction factor for tension ²	ϕ	-				0.	75				
	Strength reduction factor for shear ²	ϕ	-				0.	65				
	Nominal strength as governed by		lbf (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)	In accordance with ASTM A 615,				
ASTM A 615 Grade 40 Reduction factor for seismic shear	steel strength (for a single anchor)	V _{sa}	lbf (kN)	3,960 (17.6)	7,200 (32.0)	11,160 (49.6)	15,840 (70.5) In accordance with ASTM A 615 40 bars are furnished only in size through No. 6					
	$lpha_{V,seis}$	-		0.	65							
	Strength reduction factor for tension ²	ϕ	φ - 0.65									
	Strength reduction factor for shear ²	φ										

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

1. Values provided for reinforcing bar material types based on minimum specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

2. The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.4.

	Desire laferentian	Growthal	Unite		Nominal I	Reinforcing Bar Siz	e (Rebar)					
Design Information		Symbol	Units	10 M	15 M	20 M	25 M	30 M				
Reinforcing bar 0.D.		d	mm (in.)	11.4 (0.445)	16.0 (0.630)	19.5 (0.768)	25.2 (0.992)	29.9 (1.177)				
Reinforcing bar effective cross-sectional area		Ase	mm² (inch²)	100.3 (0.155)	201.1 (0.312)	298.6 (0.463	498.8 (0.773)	702.2 (1.088)				
	Nominal strength as governed by		kN (lb)	54.0 (12,175)	108.5 (24,410)	161.5 (36,255)	270.0 (60,550)	380.0 (85,240)				
CAN/CSA G30.18		V _{sa}	kN (lb)	32.5 (7,305)	65.0 (14,645)	97.0 (21,755)	161.5 (36,330)	227.5 (51,145)				
Grade 400	Reduction factor for seismic shear	n factor for seismic shear $ m O_{V,seis}$ - 0.65										
Strength reduction factor for tension ²		ϕ	-	0.65								
	Strength reduction factor for shear ²	ϕ	-	0.60								

1. Values provided for common bar material types based on specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

2. The tabulated value of \$\phi\$ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of \$\phi\$ must be determined in accordance with ACI 318 D.4.4.

Minimum edge dis Minimum edge distanc (45% Tmax) Minimum member t

Critical edge distance (for uncracked concr Strength reduction factor for tension,

concrete failure modes, Condition B4 Strength reduction factor for shear,

concrete failure modes, Condition B4

Concrete Breakout Design Information for Threaded Rod and in Holes Drilled with a Hammer Drill and Carbide Bit¹

CODE LISTED

ICC-ES ESR-4027

55 DI IIICU WILII A NAIIIIIIC	i villa	iu vainiu							VIII V				
Desire Information	Crembral	Unite			Nomina	al Rod Diamete	r (inch)						
Design Information	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4				
Effectiveness factor for cracked concrete	k _{c,cr}	- (SI)		17 (7.1)									
Effectiveness factor for uncracked concrete	k _{c,uncr}	- (SI)				24 (10.0)							
Minimum embedment	hef,min	inch (mm)	2-3/8 (60)	2-3/4 (70)	3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)	5 (127)				
Maximum embedment	hef,max	inch (mm)	7-1/2 10 12-1/2 15 17-1/2 20 (191) (254) (318) (381) (445) (508) ((
Minimum anchor spacing	Smin	inch (mm)	1-7/8 (48)	2-1/2 (64)	3-1/8 (79)	3-5/8 (90)	4-1/8 (105)	4-3/4 (120)	5-7/8 (150)				
Minimum edge distance ²	Cmin	inch (mm)	1-5/8 (41)	1-3/4 (44)	2 (51)	2-3/8 (60)	2-1/2 (64)	2-3/4 (70)	3-1/4 (80)				
inimum edge distance, reduced ² (45% T _{max})	Cmin,red	inch (mm)	-	-	1-3/4 (44)	1-3/4 (44)	1-3/4 (44)	1-3/4 (44)	2-3/4 (70)				
Minimum member thickness	h _{min}	inch (mm)	h_{ef} + 1-1/4 h_{ef} + 2d _o where d _o is hole diameter; $(h_{ef}$ + 30)										
Critical edge distance—splitting (for uncracked concrete only) ³	Cac	inch mm	$m \qquad \qquad C_{ac} = h_{ef} \cdot (\frac{\tau_{unor}}{(1160)})^{o_4} \cdot [3.1 - 0.7 \frac{h}{h_{ef}}] [C_{ac} = h_{ef} \cdot (\frac{\tau_{unor}}{8})^{o_4} \cdot [3.1 - 0.7 \frac{h}{h_{ef}}]$										
	1												

0.65

0.70

ф For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.

φ

1. Additional setting information is described in the installation instructions.

2. For installation between the minimum edge distance, Cmin, and the reduced minimum edge distance, Cmin,red, the maximum torque applied must be reduced (multiplied) by a factor of 0.45.

3. $\tau_{k,uner}$ need not be taken as greater than: $\tau_{k,uner} = \frac{k,uner}{\pi \cdot d}$ and $\frac{h}{h_{ef}}$ need not be taken as larger than 2.4.

π•d Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used 4. in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.4.

Bond Strength Design Information for Threaded Rod in Holes Drilled with a Hammer Drill and Carhide Rit¹

Desian Infor	motion	Symbol	Units	Nominal Rod Diameter (inch)						
Design infor	mauon	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4
Minimum emb	pedment	h _{ef,min}	inch (mm)	2-3/8 (60)	2-3/4 (70)	3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)	5 (127)
Maximum embedment		h _{ef,max}	inch (mm)	7-1/2 (191)	10 (254)	12-1/2 (318)	15 (381)	17-1/2 (445)	20 (508)	25 (635)
Temperature Range A 122°F (50°C) Maximum	Characteristic bond strength in cracked concrete	$ au_{ extsf{k,cr}}$	psi (N/mm²)	1,041 (7.2)	1,041 (7.2)	1,111 (7.7)	1,219 (8.4)	1,212 (8.4)	1,206 (8.3)	1,146 (7.9)
Long-Term Service Temperature; 176°F (80°C) Maximum Short-Term Service Temperature ²	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (N/mm²)	2,601 (17.9)	2,415 (16.7)	2,262 (15.6)	2,142 (14.8)	2,054 (14.2)	2,000 (13.8)	1,990 (13.7)
Temperature Range B 161°F (72°C) Maximum	Characteristic bond strength in cracked concrete	$ au_{ m k,cr}$	psi (N/mm²)	905 (6.2)	906 (6.2)	966 (6.7)	1060 (7.3)	1054 (7.3)	1049 (7.2)	997 (6.9)
Long-Term Service Temperature; 248°F (120°C) Maximum Short-Term Service Temperature ²	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (N/mm²)	2,263 (15.6)	2,101 (14.5)	1,968 (13.6)	1,863 (12.8)	1,787 (12.3)	1,740 (12.0)	1732 (11.9)
Temperature Range C 212°F (100°C) Maximum	Characteristic bond strength in cracked concrete	$ au_{ extsf{k,cr}}$	psi (N/mm²)	652 (4.5)	653 (4.5)	696 (4.8)	764 (5.3)	760 (5.2)	756 (5.2)	719 (5.0)
Long-Term Service Temperature; 320°F (160°C) Maximum Short-Term Service Temperature ^{2,3} Characteristic bond strength in uncracked concrete		$ au_{k,uncr}$	psi (N/mm²)	1631 (11.2)	1514 (10.4)	1418 (9.8)	1343 (9.3)	1288 (8.9)	1254 (8.6)	1248 (8.6)
Dry concrete	Anchor Category	-	-	1						
Dry concrete	Strength reduction factor	$\phi_{ m d}$	-	0.65						
Water-saturated concrete	Anchor Category	-	-	2						
water-saturated concrete	Strength reduction factor	$\phi_{ m ws}$	ws - 0.55							
Water-filled holes Anchor Category		-	-	3						
Water-filled holes Strength reduction factor		$\phi_{\scriptscriptstyle \mathrm{wf}}$	-	0.45						
Reduction factor for a	$lpha_{ m N,seis}$	-				0.95				

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

1. Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)^{0.10} (For SI: (f'c / 17.2)^{0.19}).

2. Short-term elevated concrete base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term elevated concrete base material service temperatures are roughly constant over significant periods of time.

Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only, such as wind, bond strengths may be increased by 23 percent for the temperature range C.

Concrete Breakout Design Information for Reinforcing Bars in Holes Drilled with a Hammer Drill and Carbide Bit¹

Design Information	Symbol	Units	Nominal Bar Size (US Customary)									
Design mormation	Symbol	Units	#3 #4 #5 #6 #7 #8 #9									
Effectiveness factor for cracked concrete	k _{c,cr}	- (SI)	17 (7.1)									
Effectiveness factor for uncracked concrete	k _{c,uncr}	- (SI)	24 (10.0)									
Minimum embedment	h _{ef,min}	inch (mm)	2-3/8 2-3/4 3-1/8 3-1/2 3-1/2 4 4-1/2 5 (60) (70) (79) (89) (89) (102) (114) (127)									
Maximum embedment	hef,max	inch (mm)								25 (635)		
Minimum anchor spacing	Smin	inch (mm)								5-7/8 (150)		
Minimum edge distance ²	Cmin	inch (mm)	1-5/8 (41)	1-3/4 (44)	2 (51)	2-3/8 (60)	2-1/2 (64)	2-3/4 (70)	3 (75)	3-1/4 (80)		
Minimum edge distance, reduced ²	Cmin,red	inch (mm)	-	-	1-3/4 (44)	1-3/4 (44)	1-3/4 (44)	1-3/4 (44)	2-3/4 (70)	2-3/4 (70)		
Minimum member thickness	hmin	inch (mm)		1-1/4 ⊦ 30)		hef +	- 2d₀ where d	₀ is hole diam	ieter;			
Critical edge distance—splitting (for uncracked concrete only) ³	Cac	inch I mm	$C_{ac} = h_{ef} \cdot \left(\frac{\tau_{uncr}}{1160}\right)^{0.4} \cdot [3.1 - 0.7 \frac{h}{h_{ef}}] C_{ac} = h_{ef} \cdot \left(\frac{\tau_{uncr}}{8}\right)^{0.4} \cdot [3.1 - 0.7 \frac{h}{h_{ef}}]$									
Strength reduction factor for tension, concrete failure modes, Condition B ⁴	φ	-	0.65									
Strength reduction factor for shear, concrete failure modes, Condition B ⁴	ϕ	-	0.70									

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.

1. Additional setting information is described in the installation instructions.

2. For installation between the minimum edge distance, cmin, and the reduced minimum edge distance, cmin,red, the maximum torque applied must be reduced (multiplied) by a factor of 0.45.

3. τ_{kuncr} need not be taken as greater than: $\tau_{kuncr} \cdot \sqrt{her} \cdot f'C$ and $\frac{h}{h}$ need not be taken as larger than 2.4. hef

π•d 4. Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4.

Bond Strength Design Information for Reinforcing Bars in Holes Drilled with a Hammer Drill and Carbide Rit¹

Bond Strength Design In in Holes Drilled with a H		-	rs						COD ICC-E	E LISTED S ESR-4027))
Design Information Symbol Units Nominal Bar Size (US									omary)		
Design infor	mation	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Minimum eml	pedment	h _{ef,min}	inch (mm)	2-3/8 (60.0)	2-3/4 (70.0)	3-1/8 (79.0)	3-1/2 (89.0)	3-1/2 (89.0)	4 (102.0)	4-1/2 (114.0)	5 (127.0)
Maximum embedment		h _{ef,max}	inch (mm)	7-1/2 (191.0)	10 (254.0)	12-1/2 (318.0)	15 (381.0)	17-1/2 (445.0)	20 (508.0)	22-1/2 (572.0)	25 (635.0)
Temperature Range A 122°F (50°C) Maximum	Characteristic bond strength in cracked concrete	$ au_{ ext{k,cr}}$	psi (N/mm²)	1,088 (7.5)	1,053 (7.3)	1,128 (7.8)	1,169 (8.1)	1,174 (8.1)	1,156 (8.0)	1,141 (7.9)	1,164 (8.0)
Long-Term Service Temperature; 176°F (80°C) Maximum Short-Term Service Temperature ²	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (N/mm²)	2,200 (15.2)	2,101 (14.5)	2,028 (14.0)	1,969 (13.6)	1,921 (13.2)	1,881 (13.0)	1,846 (12.7)	1,815 (12.5)
Temperature Range B 161°F (72°C) Maximum	Characteristic bond strength in cracked concrete	$ au_{ m k,cr}$	psi (N/mm²)	947 (6.5)	916 (6.3)	982 (6.8)	1,017 (7.0)	1,021 (7.0)	1,006 (6.9)	993 (6.8)	1,012 (7.0)
Long-Term Service Temperature; 248°F (120°C) Maximum Short-Term Service Temperature ²	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (N/mm²)	1,914 (13.2)	1,828 (12.6)	1,764 (12.2)	1,713 (11.8)	1,672 (11.5)	1,636 (11.3)	1,616 (11.1)	1,579 (10.9)
Temperature Range C 212°F (100°C) Maximum Long-	Characteristic bond strength in cracked concrete	$ au_{ ext{k,cr}}$	psi (N/mm²)	682 (4.7)	660 (4.6)	707 (4.9)	733 (5.1)	736 (5.1)	725 (5.0)	715 (4.9)	730 (5.0)
Term Service Temperature; 320°F (160°C) Maximum Short-Term Service Temperature ²³	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	psi (N/mm²)	1,379 (9.5)	1,317 (9.1)	1,271 (8.8)	1,235 (8.5)	1,205 (8.3)	1,179 (8.1)	1,157 (8.0)	1,138 (7.8)
Dry concrete	Anchor Category	-	-								
Strength reduction factor ϕ_d - 0.65											
Water-saturated concrete	Anchor Category	-	-	- 2							
Water-saturated concrete	Strength reduction factor	ϕ_{ws}	-	0.00							
Water filled belog	Anchor Category	-	- 3								
Water-filled holes Strength reduction factor			-		0.45						
Reduction factor for s	Reduction factor for seismic tension ⁹			0.	0.95 1.00						

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

1. Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (t'c / 2,500)¹⁰ [For SI: (t'c / 17.2)^{0.19}].

2. Short-term elevated concrete base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term elevated concrete base material service temperatures are roughly constant over significant periods of time.

3. Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only, such as wind, bond strengths may be increased by 23 percent for the temperature range C.

Design Information

Effectiveness factor for

cracked concrete Effectiveness factor for

uncracked concrete

Minimum embedment

Maximum embedment

Minimum anchor spacing

Minimum edge distance²

Minimum edge distance, reduced²

Minimum member thickness

Critical edge distance-splitting

(for uncracked concrete only)³ Strength reduction factor for tension,

concrete failure modes, Condition B4 Strength reduction factor for shear.

concrete failure modes, Condition B4

Concrete Breakout Design Information for Metric Reinforcing Bars in Holes Drilled with a Hammer Drill and Carbide Bit¹

Units

SI

(-)

SI

(-)

mm

(in.)

mm

(in.)

mm

(in.)

mm

(in.)

mm

(in.)

mm

(in.)

inch | mm

10M

70

(2.8)

225

(8.9)

55

(2-1/2)

40

(1 - 3/4)

-

15M

80

(3.1)

320

(12.6)

80

(3-1/8)

50

(2)

40

(1-3/4)

 $h_{ef} + 1 - 1/4$

(hef + 30)

Symbol

k_{c,cr}

k_{c,uncr}

h_{ef,min}

h_{ef,max}

Smin

Cmin

Cmin.red

h_{min}

Cac

φ

φ

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.

1. Additional setting information is described in the installation instructions.

30M

120

(4.7)

600

(23.5)

150

(5-7/8)

85

(3-1/8)

70

(2-3/4)

25M

100

(3.9)

505

(19.8)

120

(4-5/8)

70

(2-3/4)

40

(1-3/4)

hef + 2do where do is hole diameter;

Nominal Bar Size (CA)

20M

(17)

10

(24)

90

(3.5)

390

(15.4)

95

(3-3/4)

60

(2-3/8)

40

(1-3/4)

 $c_{ac} = h_{ef} \cdot (\frac{\tau_{uncr}}{1160})^{0.4} \cdot [3.1 - 0.7 \ \frac{h}{h_{ef}}] \quad | \quad c_{ac} = h_{ef} \cdot (\frac{\tau_{uncr}}{8})^{0.4} \cdot [3.1 - 0.7 \ \frac{h}{h_{ef}}]$

0.65

0.70

S
П
>
ΤŤ
T
0

2. For installation between the minimum edge distance, cmin, and the reduced minimum edge distance, Cmin.ed, the maximum torque applied must be reduced (multiplie	ed) by a factor of 0.45.
3. τ_{kunor} need not be taken as greater than: $\tau_{kunor} = kunor} \cdot \sqrt{h_{ef}} \cdot fc}$ and $\frac{h}{h}$ need not be taken as larger than 2.4.	
$\pi \cdot d$ her	
4. Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth ACI 318-11 D.4.3, as applicable. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ accordance with ACI 318 14.7.3.	as applicable, are used

Bond Strength Design Information for Metric Reinforcing Bars in Holes Drilled with a Hammor Drill and Carbida Bit

Desire lafer		Ormhal	Units		No	minal Bar Size (CA)	
Design Infor	mation	Symbol	Units	10M	15M	20M	25M	30M
Minimum eml	pedment	h _{ef,min}	mm (in.)	70 (2.8)	80 (3.1)	90 (3.5)	100 (3.9)	120 (4.7)
Maximum em	bedment	h _{ef,max}	mm (in.)	225 (8.9)	320 (12.6)	390 (15.4)	505 (19.8)	600 (23.5)
Temperature Range A 122°F (50°C) Maximum	Characteristic bond strength in cracked concrete	$ au_{ extsf{k,cr}}$	N/mm² (psi)	14.5 (2,110)	13.2 (1,916)	12.5 (1,814)	11.7 (1,690)	11.1 (1,612)
Long-Term Service Temperature; 176°F (80°C) Maximum Short-Term Service Temperature ²	Characteristic bond strength in uncracked concrete	auk,uncr	N/mm² (psi)	7.2 (1,041)	7.5 (1,087)	7.2 (1,045)	6.7 (965)	6.3 (915)
Temperature Range B 161°F (72°C) Maximum	Characteristic bond strength in cracked concrete	$ au_{ m k,cr}$	N/mm² (psi)	12.7 (1,836)	11.5 (1,667)	10.9 (1,578)	10.1 (1,470)	9.7 (1,402)
Long-Term Service Temperature; 248°F (120°C) Maximum Short-Term Service Temperature ²	Characteristic bond strength in uncracked concrete	$ au_{ extsf{k}, extsf{uncr}}$	N/mm² (psi)	6.2 (906)	6.5 (946)	6.3 (909)	5.8 (840)	5.5 (796)
Temperature Range C 212°F (100°C) Maximum Long-	Characteristic bond strength in cracked concrete	$ au_{ m k,cr}$	N/mm² (psi)	9.1 (1,633)	8.3 (1,201)	7.8 (1,137)	7.3 (1,059)	7.0 (1,010)
erm Service Temperature; 320°F (160°C) Maximum Short-Term Service Temperature ²³	Characteristic bond strength in uncracked concrete	$ au_{ extsf{k}, extsf{uncr}}$	N/mm² (psi)	5.6 (806)	5.8 (841)	5.6 (809)	5.2 (747)	4.9 (708)
Day concrete	Anchor Category	-	-			1		-
Dry concrete	Strength reduction factor	$\phi_{ m d}$	-			0.65		
Water-saturated concrete	Anchor Category	-	-			2		
water-Salurateu concrete	Strength reduction factor	$\phi_{ m ws}$	-			0.55		
Water-filled holes	Anchor Category	-	-			3		
Walti-IIIitu IIUito	Strength reduction factor	$\phi_{\scriptscriptstyle \mathrm{wf}}$	-			0.45		
Reduction factor for s	$\alpha_{\rm N,seis}$	-	0.9	95		1.00		

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

1. Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)^{0.10} [For SI: (f'c / 17.2)^{0.19}].

2. Short-term elevated concrete base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term elevated concrete base material service temperatures are roughly constant over significant periods of time.

3. Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only, such as wind, bond strengths may be increased by 23 percent for the temperature range C

1-800-4 DEWALT

ADHESIVES

Tension and Shear Design Strength for Threaded Rod Installed in Uncracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature;

176°F (80°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9}

					Minim	um Concrete C	ompressive St	rength			
Nominal	Embed.	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	.000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
Rod Size (in.)	Depth hef (in.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	$\phi_{v_{\rm Cp}}$ or $\phi_{v_{\rm Cp}}$ Shear (lbs.)	φ _{Να} or φ _{Na} Tension (Ibs.)	$\phi_{v_{Cb}}$ or $\phi_{v_{Cp}}$ Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	$\phi_{v_{\rm CP}}$ or $\phi_{v_{\rm CP}}$ Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	Φ _{Vcb} or Φ _{Vcp} Shear (lbs.)	∲ _{№6} or Ø _{№a} Tension (Ibs.)	$\phi_{ m Vcb}$ or $\phi_{ m Vcp}$ Shear (lbs.)
	2-3/8	2,855	2,570	3,125	2,920	3,610	3,575	4,425	4,745	5,105	5,500
3/8	3	4,055	4,010	4,440	4,555	5,125	5,570	6,280	7,400	6,710	8,775
3/0	4-1/2	7,445	7,935	8,155	9,015	9,395	11,015	9,785	13,710	10,070	16,015
	7-1/2	14,940	18,190	15,215	20,070	15,655	23,445	16,305	29,180	16,780	34,085
	2-3/4	3,555	3,305	3,895	3,755	4,500	4,590	5,510	6,095	6,365	7,455
1/2	4	6,240	6,700	6,835	7,610	7,895	9,310	9,665	12,365	11,080	15,080
1/2	6	11,465	13,235	12,560	15,035	14,500	18,390	16,150	23,515	16,620	27,470
	10	24,660	31,215	25,110	34,445	25,845	40,235	26,915	50,085	27,700	58,500
	3-1/8	4,310	4,120	4,720	4,680	5,450	5,720	6,675	7,600	7,710	9,295
5/8	5	8,720	9,985	9,555	11,345	11,030	13,875	13,510	18,430	15,600	22,540
0/6	7-1/2	16,020	19,725	17,550	22,410	20,265	27,410	23,635	35,695	24,325	41,695
	12-1/2	34,470	46,550	36,750	52,320	37,825	61,110	39,390	76,070	40,540	87,310
	3-1/2	5,105	5,015	5,595	5,700	6,460	6,970	7,910	9,255	9,135	11,320
3/4	6	11,465	13,595	12,560	15,445	14,500	18,895	17,760	25,095	20,505	30,695
3/4	9	21,060	26,855	23,070	30,510	26,640	37,320	32,225	49,325	33,165	57,615
	15	45,315	63,370	49,640	72,000	51,575	84,420	53,710	105,080	55,280	119,060
	3-1/2	5,105	4,930	5,595	5,605	6,460	6,855	7,910	9,100	9,135	11,130
7/8	7	14,445	16,605	15,825	18,865	18,275	23,075	22,380	30,650	25,840	37,485
1/0	10-1/2	26,540	32,800	29,070	37,265	33,570	45,580	41,115	60,540	43,290	71,360
	17-1/2	57,100	77,405	62,550	87,940	67,315	104,575	70,100	130,170	72,150	152,045
	4	6,240	6,115	6,835	6,945	7,895	8,495	9,665	11,280	11,160	13,800
1	8	17,650	19,750	19,335	22,435	22,325	27,440	27,340	36,450	31,570	44,580
	12	32,425	39,005	35,520	44,315	41,015	54,200	50,230	71,990	55,055	86,235
	20	69,765	92,055	76,425	104,585	85,610	126,375	89,155	157,310	91,755	183,745
	5	8,720	8,170	9,555	9,285	11,030	11,355	13,510	15,085	15,600	18,450
1-1/4	10	24,665	26,380	27,020	29,975	31,200	36,660	38,210	48,690	44,125	59,555
1-1/4	15	45,315	52,110	49,640	59,200	57,320	72,410	70,200	96,175	81,060	117,630
	25	97,500	122,990	106,805	139,730	123,330	170,905	138,610	219,325	142,655	256,185

Concrete Breakout Strength - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness,

 $\label{eq:ha} \begin{array}{l} h_a = h_{min}, \text{ and with the following conditions:} \\ \text{-} c_{a1} \text{ is greater than or equal to the critical edge distance, } c_{ac} \end{array}$

- C_{a2} is greater than or equal to 1.5 times C_{a1} .

 Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (ϕ) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-4027.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

 Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-4027.

ADHESIVES

Acrylic Injection Adhesive Anchoring System

AC200+

Tension and Shear Design Strength in Threaded Rod Installed in Cracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature; 176°F (80°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9}

juij	
ABLES	

					Minim	um Concrete C	ompressive St	rength			
Nominal	Embed.	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,000 psi	
Rod Size (in.)	Depth hef (in.)	$\phi_{\rm Ncb}$ or $\phi_{\rm Na}$ Tension (lbs.)	$\phi_{V_{CD}}$ or $\phi_{V_{CD}}$ Shear (lbs.)	φ _{Νcb} or φ _{Na} Tension (lbs.)	φ _{Vcb} or φ _{Vcp} Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	$\phi_{_{Vcb}}$ or $\phi_{_{Vcp}}$ Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	$\phi_{v_{cb}}$ or $\phi_{v_{cp}}$ Shear (lbs.)	φ _{Νcb} or φ _{Na} Tension (lbs.)	$\phi_{V_{CD}}$ or $\phi_{V_{CP}}$ Shear (lbs.)
	2-3/8	1,895	1,835	1,930	2,075	1,985	2,135	2,065	2,225	2,125	2,290
0./0	3	2,390	2,865	2,435	3,255	2,505	3,980	2,610	5,285	2,685	5,785
3/8	4-1/2	3,585	5,665	3,655	6,440	3,760	7,865	3,915	8,435	4,030	8,680
	7-1/2	5,980	12,875	6,090	13,115	6,265	13,495	6,525	14,055	6,715	14,465
	2-3/4	2,520	2,360	2,760	2,680	3,065	3,280	3,190	4,355	3,285	5,325
1/2	4	4,250	4,785	4,330	5,435	4,455	6,650	4,640	8,830	4,775	10,285
1/2	6	6,375	9,455	6,495	10,740	6,685	13,135	6,960	14,990	7,165	15,430
	10	10,630	22,300	10,825	23,315	11,140	23,995	11,600	24,985	11,940	25,715
	3-1/8	3,050	2,940	3,345	3,340	3,860	4,085	4,730	5,430	4,980	6,640
5/8	5	6,175	7,135	6,765	8,105	7,430	9,910	7,740	13,165	7,965	16,100
0/6	7-1/2	10,635	14,090	10,830	16,005	11,145	19,575	11,610	25,000	11,945	25,730
	12-1/2	17,725	33,250	18,050	37,370	18,575	40,010	19,345	41,670	19,910	42,885
	3-1/2	3,620	3,580	3,965	4,070	4,575	4,980	5,605	6,610	6,470	8,085
3/4	6	8,120	9,710	8,895	11,035	10,270	13,495	12,225	17,925	12,585	21,925
3/4	9	14,920	19,185	16,340	21,795	17,610	26,655	18,340	35,230	18,875	40,655
	15	28,005	45,265	28,520	51,425	29,350	60,300	30,565	65,835	31,460	67,755
	3-1/2	3,620	3,525	3,965	4,000	4,575	4,895	5,605	6,500	6,470	7,950
7/8	7	10,230	11,860	11,210	13,475	12,945	16,485	15,850	21,895	17,030	26,775
//0	10-1/2	18,800	23,430	20,590	26,620	23,780	32,555	24,820	43,240	25,545	50,970
	17-1/2	37,900	55,290	38,595	62,815	39,720	74,695	41,365	89,095	42,570	91,695
	4	4,420	4,365	4,840	4,960	5,590	6,065	6,845	8,060	7,905	9,855
1	8	12,500	14,105	13,695	16,025	15,815	19,600	19,365	26,035	22,130	31,845
I	12	22,965	27,860	25,160	31,655	29,050	38,715	32,255	51,425	33,200	61,595
	20	49,255	65,755	50,160	74,705	51,625	90,270	53,760	112,365	55,330	119,170
	5	6,175	5,835	6,765	6,630	7,815	8,110	9,570	10,775	11,050	13,175
1-1/4	10	17,470	18,845	19,140	21,410	22,100	26,185	27,065	34,780	31,255	42,540
1-1/4	15	32,095	37,220	35,160	42,285	40,600	51,720	47,895	68,695	49,290	84,020
	25	69,060	87,850	74,475	99,810	76,650	122,075	79,820	156,660	82,150	176,940

- Concrete Breakout Strength - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions:

- Ca1 is greater than or equal to the critical edge distance, Cac

- Ca2 is greater than or equal to 1.5 times Ca1.

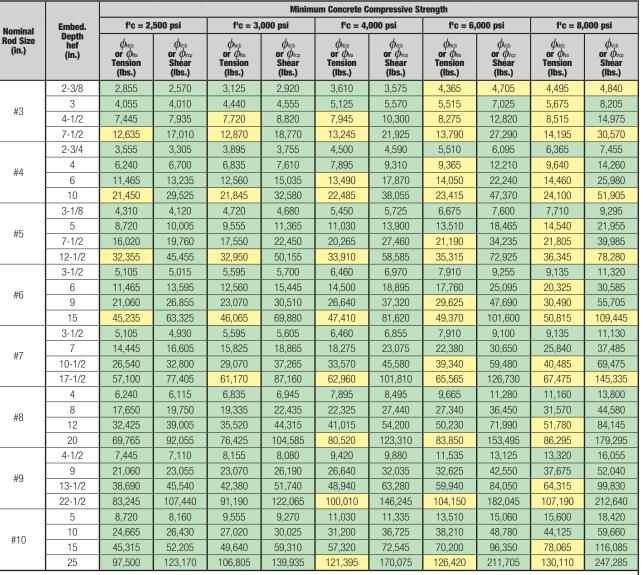
2. Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (ϕ) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (ϕ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in FSR-4027

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.


7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-4027.

Tension and Shear Design Strength for Reinforcing Bar Installed in Uncracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature;

176°F (80°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9}

 $\hfill\square$ - Concrete Breakout Strength $\hfill\square$ - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$, and with the following conditions:

- cat is greater than or equal to the critical edge distance, cac

- C_{a2} is greater than or equal to 1.5 times C_{a1} .

Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-4027.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

 Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-4027.

Tension and Shear Design Strength for Reinforcing Bar Installed in Cracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature; 176°F (80°C) Maximum Short-Term Service Temperature^{1,2,3,4,50,7,8,9}

					Minim	um Concrete C	ompressive St	rength			
Nominal	Embed.	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,000 psi	
Rod Size (in.)	Depth hef (in.)	ϕ_{Ncb} or ϕ_{Na} Tension (lbs.)	$\phi_{ m V_{Cb}}$ or $\phi_{ m V_{Cp}}$ Shear (lbs.)	$\phi_{\rm Ncb}$ or $\phi_{\rm Na}$ Tension (lbs.)	$\phi_{v_{Cb}}$ or $\phi_{v_{Cp}}$ Shear (lbs.)	$\phi_{\rm Ncb}$ or $\phi_{\rm Na}$ Tension (lbs.)	$\phi_{v_{cb}}$ or $\phi_{v_{cp}}$ Shear (lbs.)	φ _{Ncb} or φ _{Na} Tension (lbs.)	$\phi_{v_{cb}}$ or $\phi_{v_{cp}}$ Shear (lbs.)	ϕ_{Ncb} or ϕ_{Na} Tension (lbs.)	φ _{vcb} or φ _{vcp} Shear (lbs.)
	2-3/8	1,980	1,835	2,015	2,085	2,075	2,235	2,160	2,325	2,225	2,395
#3	3	2,500	2,865	2,545	3,255	2,620	3,980	2,730	5,020	2,810	5,860
#3	4-1/2	3,750	5,665	3,820	6,300	3,930	7,355	4,090	8,815	4,210	9,070
	7-1/2	6,250	12,150	6,365	13,405	6,550	14,105	6,820	14,690	7,020	15,120
	2-3/4	2,520	2,360	2,760	2,680	3,100	3,280	3,225	4,355	3,320	5,325
	4	4,300	4,785	4,380	5,435	4,505	6,650	4,695	8,720	4,830	10,185
#4	6	6,450	9,455	6,570	10,740	6,760	12,765	7,040	15,165	7,245	15,610
	10	10,750	21,090	10,950	23,270	11,270	24,270	11,735	25,275	12,075	26,015
	3-1/8	3,050	2,940	3,345	3,340	3,860	4,090	4,730	5,430	5,055	6,640
	5	6,175	7,145	6,765	8,120	7,545	9,930	7,855	13,190	8,085	15,680
#5	7-1/2	10,795	14,115	10,995	16,035	11,315	19,615	11,785	24,455	12,130	26,125
	12-1/2	17,995	32,465	18,325	35,825	18,860	40,625	19,640	42,305	20,215	43,540
	3-1/2	3,620	3,580	3,965	4,070	4,575	4,980	5,605	6,610	6,470	8,085
	6	8,120	9,710	8,895	11,035	10,270	13,495	11,725	17,925	12,065	21,845
#6	9	14,920	19,185	16,340	21,795	16,890	26,655	17,585	34,065	18,100	38,985
	15	26,855	45,235	27,350	49,915	28,150	58,300	29,310	63,135	30,170	64,975
	3-1/2	3,620	3,525	3,965	4,000	4,575	4,895	5,605	6,500	6,470	7,950
	7	10,230	11,860	11,210	13,475	12,945	16,485	15,850	21,895	16,495	26,775
#7	10-1/2	18,800	23,430	20,590	26,620	23,085	32,555	24,040	42,485	24,745	49,625
	17-1/2	36,710	55,290	37,385	62,260	38,475	72,720	40,070	86,300	41,240	88,820
	4	4,420	4,365	4,840	4,960	5,590	6,065	6,845	8,060	7,905	9,855
	8	12,500	14,105	13,695	16,025	15,815	19,600	19,365	26,035	21,215	31,845
#8	12	22,965	27,860	25,160	31,655	29,050	38,715	30,920	51,425	31,820	60,105
	20	47,210	65,755	48,080	74,705	49,485	88,080	51,530	109,640	53,035	114,230
	4-1/2	5,275	5,080	5,780	5,770	6,670	7,060	8,170	9,375	9,435	11,465
	9	14,920	16,465	16,340	18,710	18,870	22,880	23,110	30,390	26,500	37,170
#9	13-1/2	27,405	32,530	30,020	36,955	34,665	45,200	38,625	60,035	39,750	71,305
	22-1/2	58,965	76,740	60,060	87,190	61,815	104,460	64,375	130,030	66,250	142,695
	5	6,175	5,830	6,765	6,620	7,815	8,100	9,570	10,755	11,050	13,155
	10	17,470	18,880	19,140	21,445	22,100	26,230	27,065	34,840	31,255	42,615
#10	15	32,095	37,290	35,160	42,365	40,600	51,815	48,645	68,825	50,065	82,920
	25	69,060	87,980	75,645	99,955	77,855	121,485	81,075	151,220	83,440	176,635

🔲 - Concrete Breakout Strength 🔲 - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$, and with the following conditions:

- c_{a1} is greater than or equal to the critical edge distance, c_{ac}

- C_{a2} is greater than or equal to 1.5 times C_{a1} .

2. Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-4027.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

 Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-4027.

Nominal

fⁱc = 8,000 psi (55.2 MPa)

Rebar Size	nef in. (mm)	ϕ_{Ncb} or ϕ_{Na} Tension Ibs. (MPa)	Φν _{cb} or Φν _{cp} Shear Ibs. (MPa)	φ _{Νcb} or φ _{Na} Tension Ibs. (MPa)	φ _{Vcb} or φ _{Vcp} Shear Ibs. (MPa)	ϕ_{Ncb} or ϕ_{Na} Tension Ibs. (MPa)	φ _{Vcb} or φ _{Vcp} Shear Ibs. (MPa)	Φ _{Νcb} or Φ _{Na} Tension Ibs. (MPa)	φ _{νcb} or φ _{νcp} Shear Ibs. (MPa)	Φ _{Νcb} or Φ _{Na} Tension Ibs. (MPa)	ϕ_{Vcb} or ϕ_{Vcp} Shear Ibs. (MPa)
	2.4	2,900	2,580	3,175	2,930	3,670	3,585	4,495	4,760	5,170	5,550
	(61)	(12.9)	(11.5)	(14.1)	(13.0)	(16.3)	(15.9)	(20.0)	(21.2)	(23.0)	(24.7)
10M	3.6	5,235	5,440	5,735	6,180	6,625	7,560	7,445	9,370	7,665	10,820
	(90)	(23.3)	(24.2)	(25.5)	(27.5)	(29.5)	(33.6)	(33.1)	(41.7)	(34.1)	(48.1)
TOW	5.3	9,620	10,755	10,420	12,075	10,725	13,940	11,170	17,075	11,495	19,715
	(136)	(42.8)	(47.8)	(46.4)	(53.7)	(47.7)	(62.0)	(49.7)	(76.0)	(51.1)	(87.7)
	7.5	14,375	18,220	14,640	19,960	15,070	23,045	15,690	28,225	16,150	32,595
	(191)	(63.9)	(81.0)	(65.1)	(88.8)	(67.0)	(102.5)	(69.8)	(125.6)	(71.8)	(145.0)
	3.1	4,255	4,050	4,665	4,600	5,385	5,625	6,595	7,475	7,615	9,140
	(79)	(18.9)	(18.0)	(20.8)	(20.5)	(24.0)	(25.0)	(29.3)	(33.3)	(33.9)	(40.7)
15M	5.0	8,825	10,105	9,665	11,480	11,160	14,045	13,555	17,950	13,950	20,725
	(128)	(39.3)	(44.9)	(43.0)	(51.1)	(49.6)	(62.5)	(60.3)	(79.8)	(62.1)	(92.2)
10101	7.6	16,210	19,960	17,760	22,680	19,525	26,695	20,335	32,695	20,930	37,750
	(192)	(72.1)	(88.8)	(79.0)	(100.9)	(86.9)	(118.7)	(90.5)	(145.4)	(93.1)	(167.9)
	12.6	31,050	44,995	31,620	49,290	32,545	56,915	33,890	69,705	34,880	75,125
	(320)	(138.1)	(200.1)	(140.7)	(219.3)	(144.8)	(253.2)	(150.8)	(310.1)	(155.2)	(334.2)
	3.5	5,105	4,995	5,595	5,675	6,460	6,945	7,910	9,220	9,135	11,280
	(89)	(22.7)	(22.2)	(24.9)	(25.2)	(28.7)	(30.9)	(35.2)	(41.0)	(40.6)	(50.2)
20M	6.1	11,870	14,045	13,005	15,955	15,015	19,515	18,390	25,390	19,620	29,320
	(156)	(52.8)	(62.5)	(57.8)	(71.0)	(66.8)	(86.8)	(81.8)	(112.9)	(87.3)	(130.4)
2011	9.2	21,810	27,750	23,890	31,525	27,460	37,770	28,595	46,260	29,430	53,415
	(234)	(97.0)	(123.4)	(106.3)	(140.2)	(122.1)	(168.0)	(127.2)	(205.8)	(130.9)	(237.6)
	15.4	43,665	63,590	44,470	69,660	45,765	80,435	47,660	98,515	49,050	105,650
	(390)	(194.2)	(282.9)	(197.8)	(309.9)	(203.6)	(357.8)	(212.0)	(438.2)	(218.2)	(470.0)
	3.9	6,005	5,855	6,580	6,650	7,600	8,135	9,305	10,805	10,745	13,215
	(99)	(26.7)	(26.0)	(29.3)	(29.6)	(33.8)	(36.2)	(41.4)	(48.1)	(47.8)	(58.8)
25M	7.9	17,440	19,590	19,105	22,255	22,060	27,220	27,020	36,155	30,525	41,845
	(202)	(77.6)	(87.1)	(85.0)	(99.0)	(98.1)	(121.1)	(120.2)	(160.8)	(135.8)	(186.1)
20101	11.9	32,040	38,700	35,100	43,970	40,530	53,780	44,490	66,015	45,790	76,230
	(302)	(142.5)	(172.1)	(156.1)	(195.6)	(180.3)	(239.2)	(197.9)	(293.6)	(203.7)	(339.1)
	19.8	67,940	90,755	69,190	99,420	71,205	114,800	74,155	140,600	76,320	162,350
	(504)	(302.2)	(403.7)	(307.8)	(442.2)	(316.7)	(510.7)	(329.9)	(625.4)	(339.5)	(722.2)
	4.7	7,950	7,510	8,705	8,530	10,055	10,435	12,315	13,860	14,215	16,950
	(119)	(35.4)	(33.4)	(38.7)	(37.9)	(44.7)	(46.4)	(54.8)	(61.7)	(63.2)	(75.4)
30M	9.4	22,540	24,470	24,695	27,805	28,515	34,005	34,920	45,165	40,325	53,080
	(239)	(100.3)	(108.8)	(109.8)	(123.7)	(126.8)	(151.3)	(155.3)	(200.9)	(179.4)	(236.1)
JUIWI	14.1	41,410	48,350	45,365	54,930	52,380	67,185	59,745	83,745	61,490	96,700
	(359)	(184.2)	(215.1)	(201.8)	(244.3)	(233.0)	(298.9)	(265.8)	(372.5)	(273.5)	(430.1)
	23.5	89,105	114,045	92,910	126,110	95,620	145,620	99,575	178,350	102,480	205,940
	(598)	(396.4)	(507.3)	(413.3)	(561.0)	(425.3)	(647.8)	(442.9)	(793.3)	(455.9)	(916.1)
🔲 - Concrete E	Breakout Strengt	h 🔲 - Bond Stre	ength/Pryout Stre	ngth							

Tension and Shear Design Strength for Reinforcing Bar Installed in Uncracked Concrete (Bond or Concrete Strength)

Minimum Concrete Compressive Strength

fⁱc = 4,000 psi (27.6 MPa) fⁱc = 6,000 psi (41.4 MPa)

Drilled with a Hammer-Drill and Carbide Bit in a Drv Hole Condition

176°F (80°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9}

fⁱc = 2,500 psi (17.2 MPa)

Embed. Depth

Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature;

f'c = 3,000 psi (20.7 MPa)

- Concrete Breakout Strength - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness,

 $h_a = h_{min}$, and with the following conditions:

- c_{a1} is greater than or equal to the critical edge distance, c_{ac}

- $\ensuremath{\mathsf{Ca2}}$ is greater than or equal to 1.5 times $\ensuremath{\mathsf{Ca1}}$.

2. Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-4027.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

 Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-4027.

Tension and Shear Design Strength for Reinforcing Bar Installed in Cracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition

Temperature Range A: 122°F (50°C) Maximum Long-Term Service Temperature; 176°F (80°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9t}

					Minim	um Concrete C	ompressive St	rength			
	Embed.	f'c = 2, (17.2	500 psi MPa)	f'c = 3, (20.7	000 psi MPa)		000 psi MPa)	f'c = 6, (41.4	000 psi MPa)	f'c = 8,000 psi (55.2 MPa)	
Nominal Rebar Size	Depth hef in. (mm)	φ _{Ncb} or φ _{Na} Tension Ibs. (MPa)	$\phi_{V_{CD}}$ or $\phi_{V_{CP}}$ Shear Ibs. (MPa)	φ _{Ncb} or φ _{Na} Tension Ibs. (MPa)	ϕ_{Vcb} or ϕ_{Vcp} Shear Ibs. (MPa)	ϕ_{Ncb} or ϕ_{Na} Tension Ibs. (MPa)	$\phi_{v_{Cb}}$ or $\phi_{v_{Cp}}$ Shear Ibs. (MPa)	ϕ_{Ncb} or ϕ_{Na} Tension Ibs. (MPa)	$\phi_{V_{CD}}$ or $\phi_{V_{CP}}$ Shear Ibs. (MPa)	φ _{Ncb} or φ _{Na} Tension Ibs. (MPa)	$\phi_{V_{CP}}$ or $\phi_{V_{CP}}$ Shear ibs. (MPa)
	2.40	2,055	1,670	2,250	1,830	2,600	2,115	3,180	2,590	3,675	2,990
	(61)	(9.1)	(7.4)	(10.0)	(8.1)	(11.6)	(9.4)	(14.1)	(11.5)	(16.3)	(13.3)
	3.56	3,710	3,255	4,065	3,565	4,690	4,120	5,745	5,045	6,635	5,825
	(90)	(16.5)	(14.5)	(18.1)	(15.9)	(20.9)	(18.3)	(25.6)	(22.4)	(29.5)	(25.9)
10M	5.34	6,815	5,935	7,465	6,500	8,620	7,505	10,560	9,195	11,495	10,615
	(136)	(30.3)	(26.4)	(33.2)	(28.9)	(38.3)	(33.4)	(47.0)	(40.9)	(51.1)	(47.2)
	7.50	11,350	9,810	12,430	10,745	14,355	12,410	15,690	15,200	16,150	17,550
	(191)	(50.5)	(43.6)	(55.3)	(47.8)	(63.9)	(55.2)	(69.8)	(67.6)	(71.8)	(78.1)
	3.10	3,015	2,890	3,305	3,190	3,815	3,685	4,670	4,515	5,395	5,210
	(79)	(13.4)	(12.9)	(14.7)	(14.2)	(17.0)	(16.4)	(20.8)	(20.1)	(24.0)	(23.2)
	5.04	6,250	6,595	6,845	7,225	7,905	8,345	9,685	10,220	11,180	11,800
	(128)	(27.8)	(29.3)	(30.4)	(32.1)	(35.2)	(37.1)	(43.1)	(45.5)	(49.7)	(52.5)
15M	7.56 (192)	11,480 (51.1)	12,015 (53.4)	12,580 (56.0)	13,165 (58.6)	14,525 (64.6)	15,200 (67.6)	17,790 (79.1)	18,615 (82.8)	20,540 (91.4)	21,495 (95.6)
	12.60	24,705	25,620	27,065	28,065	31,250	32,405	33,890	39,690	34,880	45,830
	(320)	(109.9)	(114.0)	(120.4)	(124.8)	(139.0)	(144.1)	(150.8)	(176.5)	(155.2)	(203.9)
	3.50	3,620	3,570	3,965	4,055	4,575	4,730	5,605	5,790	6,470	6,685
	(89)	(16.1)	(15.9)	(17.6)	(18.0)	(20.4)	(21.0)	(24.9)	(25.8)	(28.8)	(29.7)
0014	6.14	8,410	9,390	9,210	10,285	10,635	11,875	13,030	14,545	15,045	16,795
	(156)	(37.4)	(41.8)	(41.0)	(45.7)	(47.3)	(52.8)	(58.0)	(64.7)	(66.9)	(74.7)
20M	9.21	15,450	17,105	16,925	18,740	19,540	21,640	23,935	26,500	27,635	30,600
	(234)	(68.7)	(76.1)	(75.3)	(83.4)	(86.9)	(96.3)	(106.5)	(117.9)	(122.9)	(136.1)
	15.35	33,240	36,430	36,415	39,905	42,045	46,080	47,660	56,435	49,050	65,165
	(390)	(147.9)	(162.0)	(162.0)	(177.5)	(187.0)	(205.0)	(212.0)	(251.0)	(218.2)	(289.9)
	3.90	4,255	4,180	4,660	4,750	5,385	5,810	6,590	7,125	7,610	8,230
	(99)	(18.9)	(18.6)	(20.7)	(21.1)	(24.0)	(25.8)	(29.3)	(31.7)	(33.9)	(36.6)
0514	7.94 (202)	12,355 (55.0)	13,355 (59.4)	13,535 (60.2)	14,630 (65.1)	15,625 (69.5)	16,890 (75.1)	19,140 (85.1)	20,685 (92.0)	22,100 (98.3)	23,890 (106.3)
25M	11.91	22,695	24,325	24,865	26,650	28,710	30,770	35,160	37,685	40,600	43,515
	(302)	(101.0)	(108.2)	(110.6)	(118.5)	(127.7)	(136.9)	(156.4)	(167.6)	(180.6)	(193.6)
	19.84	48,835	51,810	53,495	56,755	61,770	65,535	74,155	80,260	76,320	92,680
	(504)	(217.2)	(230.5)	(238.0)	(252.5)	(274.8)	(291.5)	(329.9)	(357.0)	(339.5)	(412.3)
	4.70	5,630	5,365	6,165	6,095	7,120	7,455	8,720	9,230	10,070	10,660
	(119)	(25.0)	(23.9)	(27.4)	(27.1)	(31.7)	(33.2)	(38.8)	(41.1)	(44.8)	(47.4)
2014	9.42	15,965	16,900	17,490	18,510	20,195	21,375	24,735	26,180	28,565	30,230
	(239)	(71.0)	(75.2)	(77.8)	(82.3)	(89.8)	(95.1)	(110.0)	(116.5)	(127.1)	(134.5)
30M	14.13	29,335	30,785	32,135	33,725	37,105	38,940	45,445	47,690	52,475	55,070
	(359)	(130.5)	(136.9)	(142.9)	(150.0)	(165.1)	(173.2)	(202.1)	(212.1)	(233.4)	(245.0)
	23.54	63,115	65,565	69,140	71,820	79,835	82,930	97,780	101,570	102,480	117,280
	(598)	(280.7)	(291.6)	(307.6)	(319.5)	(355.1)	(368.9)	(434.9)	(451.8)	(455.9)	(521.7)

🔲 - Concrete Breakout Strength 📃 - Bond Strength/Pryout Strength

1. Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions:

- Cat is greater than or equal to the critical edge distance, Cac

- C_{a2} is greater than or equal to 1.5 times C_{a1} .

2. Calculations were performed according to ACI 318-14 Ch.17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.

3. Strength reduction factors (\$\phi\$) for concrete breakout strength are based on ACI 318-14 Section 5.3 for load combinations. Condition B was assumed.

4. Strength reduction factors (ϕ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-4027.

5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-4027 for applicable information.

6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318-14 17.3.1.2.

7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.

8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318-14 Ch.17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Ch.17 and ICC-ES AC308 and ESR-4027.

Tension Design of Steel Elements (Steel Strength)^{1,2}

	Steel Elements - Threaded Rod and Reinforcing Bar													
Nominal Rod/Rebar Size	ASTM A36 and ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM A193 Grade B7 and ASTM F1554 Grade 105	ASTM A449	ASTM F568M Class 5.8	ASTM F593 CW Stainless (Types 304 and 316)	ASTM A193 Grade B8/ B8M2, Class 2B Stainless (Types 304 and 316)	ASTM A615 Grade 60 Rebar	ASTM A706 Grade 60 Rebar	ASTM A615 Grade 40 Rebar	CAN/CSA G30.18 Grade 400			
	ØN₅a Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (lbs.)	ØN₅a Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)	ØNsa Tension (Ibs.)			
3/8" or #3	3,370	4,360	7,265	6,975	3,655	5,040	5,525	6,435	6,600	4,290				
10M											12,175			
1/2" or #4	6,175	7,980	13,300	12,770	6,690	9,225	10,110	11,700	12,000	7,800				
5/8" or #5	9,835	12,715	21,190	20,340	10,650	14,690	16,105	18,135	18,600	12,090				
15M											24,410			
3/4" or #6	14,550	18,815	31,360	30,105	15,765	18,480	23,830	25,740	26,400	17,160				
20M											36,255			
7/8" or #7	20,085	25,970	43,285	41,930	21,760	25,510	32,895	35,100	36,000					
25M											60,550			
1" or #8	26,350	34,070	56,785	54,515	28,545	33,465	43,160	46,215	47,400					
#9								58,500	60,000					
30M											85,240			
1-1/4" or #10	42,160	54,510	90,850	76,315	45,670	53,540	69,050	74,295	76,200					

1. Steel tensile design strength according to ACI 318-14 Ch.17, $\phi_{Nsa} = \phi \bullet_{Ase,N} \bullet_{futa}$

2. The tabulated steel design strength in tension must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest load

level controls.

Nominal Rod/Rebar Size 3/8" or #3 10M	nd ASTM F1554	ASTM F1554 Grade 55 ØVsa	ASTM A193 Grade B7 and ASTM F1554 Grade 105	ASTM A449	ASTM F568M Class 5.8	ASTM F593 CW Stainless	ASTM A193 Grade B8/ B8M2,	ASTM A615	ASTM A706	ASTM A615	CAN/CSA		
3/8" or #3 1 10M	Shear	and ASTM F1554 Grade 36 ØV∞ ØV∞ Shear Shear		and ASIM F1554 F1554 Grade 55 ØVsa ØVsa				(Types 304 and 316)	Class 2B Stainless (Types 304 and 316)	Grade 60 Rebar	Grade 60 Rebar	Grade 40 Rebar	Gan/CSA G30.18 Grade 400
10M	(iner)		ØVsa Shear (lbs.)	ØV∞ Shear (Ibs.)	ØV∞ Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØVsa Shear (Ibs.)	ØV₅a Shear (Ibs.)	ØVsa Shear (Ibs.)		
	1,755	2,265	3,775	3,625	2,020	2,790	2,870	3,565	3,430	2,375			
1/2" or #4											7,305		
	3,210	4,150	6,915	6,640	3,705	5,110	5,255	6,480	6,240	4,320			
5/8" or #5	5,115	6,610	11,020	10,575	5,900	8,135	8,375	10,045	9,670	6,695			
15M											14,645		
3/4" or #6 7	7,565	9,785	16,305	15,655	8,730	10,235	12,390	14,255	13,730	9,505			
20M											21,755		
7/8" or #7 1	10,445	13,505	22,505	21,805	12,050	14,130	17,105	19,440	18,720				
25M											36,330		
1" or #8 1	13,700	17,715	29,525	28,345	15,810	18,535	22,445	25,595	24,650				
#9								32,400	31,200				
30M											51,145		
1-1/4" or #10 2	21,920	28,345	47,250	39,685	25,295	29,655	35,905	41,150	39,625				

Shear Design of Steel Elements (Steel Strength)^{1,2}

1. Steel shear design strength according to ACI 318-14 Ch.17, ϕ Vsa = $\phi \bullet 0.60 \bullet A_{se,V} \bullet f_{uta}$

2. The tabulated steel design strength in shear must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest load level controls.

ADHESIVES

Development Lengths for Common Reinforcing Bar Connections^{1,2,3,6}

Design Information	Symbol	Reference	Units			N	ominal Rel	oar Size (U	S)		
Design Information	Symbol	Standard	Units	#3	#4	#5	#6	#7	#8	#9	#10
Nominal rebar diameter	d₀	ASTM A615/A706, Grade 60	in. (mm)	0.375 (9.5)	0.5 (12.7)	0.625 (15.9)	0.75 (19.1)	0.875 (22.2)	1 (25.4)	1.128 (28.6)	1.27 (32.3
Nominal rebar area	Ab	(fy = 60 ksi)	in² (mm²)	0.11 (71)	0.2 (127)	0.31 (198)	0.44 (285)	0.6 (388)	0.79 (507)	1 (645)	1.27 (817
Development length in $f'c = 2,500$ psi concrete ^{4,5}			in. (mm)	12 (305)	14.4 (366)	18 (457)	21.6 (549)	31.5 (800)	36 (914)	40.6 (1031)	45.7 (1161
Development length in f'c = 3,000 psi concrete ^{4,5}		ACI 318-14	in. (mm)	12 (305)	13.1 (334)	16.4 (417)	19.7 (501)	28.8 (730)	32.9 (835)	37.1 (942)	41.7 (1060
Development length in $f'c = 4,000$ psi concrete ^{4,5}	ld	25.4.2.3 or ACI 318-11 12.2.3 as applicable	in. (mm)	12 (305)	12 (305)	14.2 (361)	17.1 (434)	24.9 (633)	28.5 (723)	32.1 (815)	36.2 (920)
Development length in f'c = 6,000 psi concrete ^{4,5}		applicable	in. (mm)	12 (305)	12 (305)	12 (305)	13.9 (354)	20.3 (516)	23.2 (590)	26.2 (666)	29.5 (750)
Development length in f'c = 8,000 psi concrete ^{4,5}			in. (mm)	12 (305)	12 (305)	12 (305)	12.1 (307)	17.6 (443)	20.1 (511)	22.7 (577)	25.6 (649)
Design Information	Symbol	Reference	Units			N	ominal Rel	oar Size (C	A)		
Design mornation	oymbol	Standard	Units	10M		15M	20	m	25M		30M
Nominal rebar diameter	d⊳	CA/CSA G30.18	mm (in.)	11.3 (0.44		16.0 (0.630)	19).5 (68)	25.2 (0.992)		29.9 1.177)
Norminal repar diameter		Grado 400	(111.)	(0.44)	-/	(1 1 1 1)	200 3		(0.00L)	(
Nominal rebar diameter	Ab	Grade 400 (fy = 58 ksi)	mm² (in²)	100 (0.16	<u> </u>	()	30	,	500 (0.77)	- È	700 (1.09)
	Ab		mm²	100)	200	(0.	00 46)	500	(
Nominal rebar area Development length in $f'c = 2,500 \text{ psi concrete}^{46}$ Development length in	A _b	(fy = 58 ksi)	mm² (in²) mm	100 (0.16 315)	200 (0.31) 445	(0. 6) (26)	00 46) 78 5.7)	500 (0.77) 876	((1.09) 1041
Nominal rebar area Development length in $fc = 2,500 \text{ psi concrete}^{4.6}$ Development length in $fc = 3,000 \text{ psi concrete}^{4.6}$ Development length in	Α _b	(fy = 58 ksi) ACI 318-14 25.4.2.3 or ACI 318-11 12.2.3	mm² (in²) mm (in.) mm	100 (0.16 315 (12.4 305)	200 (0.31) 445 (17.5) 407	(0. (26 (26 (24) (24) (24)	200 46) 78 5.7) 20	500 (0.77) 876 (34.5) 800		(1.09) 1041 (41.0) 950
Nominal rebar area Development length in f'c = 2,500 psi concrete ^{4,6} Development length in f'c = 3,000 psi concrete ^{4,6}		(fy = 58 ksi) ACI 318-14 25.4.2.3 or	mm² (in²) mm (in.) mm (in.) mm	100 (0.16 315 (12.4 305 (12.0 305))))	200 (0.31) 445 (17.5) 407 (16.0) 353	(0. 6) (26 (24 (24) (21) (21) (21) (21)	20 46) 78 5.7) 20 4.4) 36 .1)	500 (0.77) 876 (34.5) 800 (31.5) 693		(1.09) 1041 (41.0) 950 (37.4) 823

1. Calculated development lengths in accordance with ACI 318-14 25.4.2.3 or ACI 318-11 12.2.3, as applicable, for reinforcing bars are valid for static, wind, and earthquake loads.

2. Calculated development lengths in SDC C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable.

3. For Class B splices, minimum length of lap for tension lap splices is 1.314 in accordance with ACI 318-14 25.5.2 and ACI 318-11 12.15.1, as applicable.

4. For lightweight concrete, $\lambda = 0.75$; therefore multiply development lengths by 1.33 (increase development length by 33 percent), unless the provisions of ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d), as applicable, are met to permit alternate values of λ (e.g for sand-lightweight concrete, λ = 0.85; therefore multiply development lengths by 1.18). Refer to ACI 318-14 19.2.4 or ACI 318-11 8.6.1, as applicable. $\left(\frac{D_b + K_{T}}{d_b}\right) = 2.5, \psi_{t}=1.0, \psi_{t}=0.8 \text{ for } d_b \le \#6,1.0 \text{ for } d_b > \#6. \text{ Refer to ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4, as applicable.}$

5. 5. $\left(\frac{1}{0}\right) = 2.5$, ψ =1.0, ψ =1.0, ψ =0.8 for $d_b \le #6$, 1.0 for $d_b > \#6$. Here to ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4, as applicable. 6. Calculations may be performed for other steel grades and concrete compressive strengths per ACI 318-14 Chapter 25 or ACI 318-11 Chapter 12, as applicable.

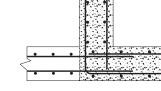
Installation Parameters for Common Post-Installed Reinforcing Bar Connections

Parameter	Symbol	Units	Nominal Rebar Size (US)										
Falailletei	Symbol	Units	#3	#4		#5	#6	#7	#8	#9	#10		
Nominal hole diameter ¹	d₀	in.	1/2	5/8		3/4	7/8	1	1-1/8 1-1/4	1-3/8	1-1/2		
Effective embedment	h _{ef}	in.	2-3/8 to 22-1/2	2-3/4 to	o 30	3-1/8 to 37-1/2	3-1/2 to 45	3-1/2 to 52-1/2	4 to 60	4-1/2 to 67-1/2	5 to 75		
Parameter	Symbol	Units				Nominal Rebar Size (CA)							
Falanietei	Symbol	Units	10M			15M	20	M	25M		30M		
Nominal hole diameter ¹	d₀	in.	9/16			3/4	1		1-1/4		1-1/2		
Effective embedment	hef	mm	70 to 68	30		80 to 960	90 to	1170	100 to 1510	12	0 to 1795		

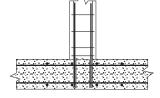
For SI: 1 inch = 25.4 mm,; for pound-inch units: 1 mm = 0.03937 inches.

1. For any case, it must be possible for the reinforcing bar (rebar) to be inserted into the cleaned hole without resistance.

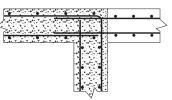
2. Consideration should be given regarding the commercial availability of carbide drill bits (including hollow drill bits), as applicable, with lengths necessary to achieve effective embedments for post-installed reinforcing bar connections.



Installation Detail for Post-Installed Reinforcing Bar Connection


 $\begin{array}{l} d_b = nomial \ bar \ diameter \\ d_o = nominal \ hole \ diameter \\ h_{ef} = effective \ embedment \\ h = member \ thickness \end{array}$

Acrylic Injection Adhesive Anchoring System


Tension Lap Splice with Existing Reinforcement for Footing and Foundation Extensions

blowing following drilling) is not required.

Examples of Development Length Application Details for Post-Installed Reinforcing Bar Connections Provided for Illustrator

Tension Development of Column, Cap or Wall Dowels

Tension Lap Splice with Existing Flexural Reinforcement For Slab and Beam Extensions

Hole Cleaning Tools and Accessories for Post-Installed Rebar Connections^{1,2,3,4,5,6,7}

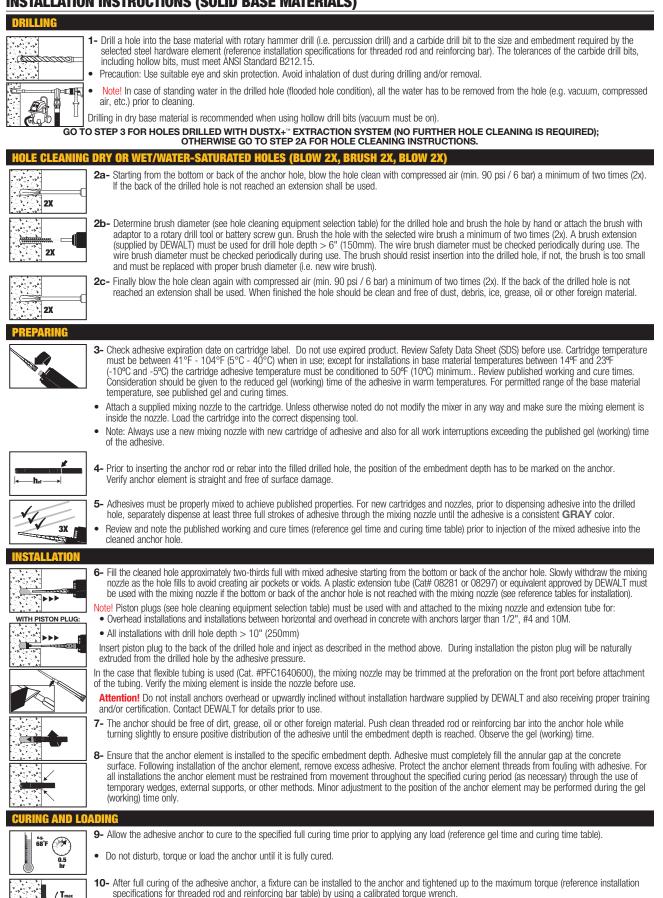
Rebar Size	Drill Bit Size (inch)	Brush Size (inch)	Brush Length (inches)	Wire Brush (Cat. No.)	Plug Size (inch)	Piston Plug (Cat. No.)
No. 3	1/2	1/2	6	PFC1671010	N/A	N/A
10M	9/16	9/16	6	PFC1671150	N/A	N/A
No. 4	5/8	5/8	6	PFC1671200	N/A	N/A
No. 5	3/4	3/4	6	PFC1671250	3/4	PFC1691520
15M	3/4	3/4	6	PFC1671250	3/4	PFC1691520
No. 6	7/8	7/8	6	PFC1671300	7/8	PFC1691530
20M	1	1	6	PFC1671350	1	PFC1691540
No. 7	1	1	6	PFC1671350	1	PFC1691540
25M	1-1/4	1-1/4	6	PFC1671450	1-1/4	PFC1691555
No. 8	1-1/8	1-1/8	6	PFC1671425	1-1/8	PFC1691550
NU. 0	1-1/4	1-1/4	6	PFC1671450	1-1/4	PFC1691555
No. 9	1-3/8	1-3/8	6	PFC1671450	1-3/8	PFC1691560
30M	1-1/2	1-1/2	6	PFC1671500	1-1/2	PFC1691570
No. 10	1-1/2	1-1/2	6	PFC1671500	1-1/2	PFC1691570
1. If the DEWALT DustX+ extraction system is used to automatically clean the holes during drilling, standard hole cleaning (brushing and						

Holes may be drilled with hammer-drill, i.e. rotary impact drills or rock drills with a carbide drill bit (including hollow bits).
 For any case, it must be possible for the reinforcing bar to be inserted into the cleaned drill hole without resistance.
 A brush extension (Cat.#08282) must be used with a steel wire brush for holes drilled deeper than the listed brush length.
 Brush adaptors for power tool connections are available for drill chuck (Cat.#08296) and SDS (Cat.#08283).

the bottom or back of the anchor hole is not reached with the mixing nozzle only.

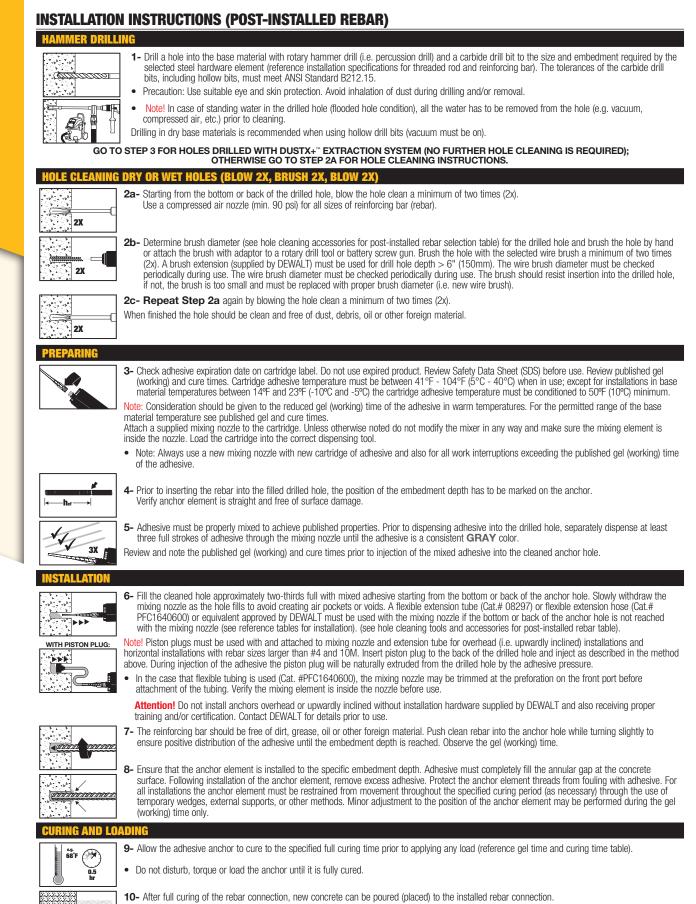
(Cat.#PFC1640600) or equivalent approved by DEWALT must be used with piston plugs.

6. A flexible extension tube (Cat.#08297) or flexible extension hose (Cat.#PFC1640600) or equivalent approved by DEWALT must be used if


size (see table). N/A = Not applicable. All horizontal installations require the use of piston plugs where one is tabulated together with the anchor size and where the embedment depth is greater than 8 inches. A flexible extension tube (Cat.#08297) or flexible extension hose

7. All overhead (i.e upwardly inclined) installations require the use of piston plugs during where one is tabulated together with the anchor

INSTALLATION INSTRUCTIONS (SOLID BASE MATERIALS)



Take care not to exceed the maximum torque for the selected anchor.

TECHNICAL GUIDE – ADHESIVES © 2018 DEWALT – REV. G

ADHESIVES

8/8/8/8/8/ 18/18/8/

REFERENCE INSTALLATION TABLES

Gel (working) Time and Curing Table

Temperature of base material	Gel (working) time	Full curing time
14°F (-10°C) to 22°F (-6°C)	60 minutes	24 hours
23°F (-5°C) to 31°F (-1°C)	50 minutes	5 hours
32°F (0°C) to 40°F (4°C)	25 minutes	3.5 hours
41°F (5°C) to 49°F (9°C)	15 minutes	2 hours
50°F (10°C) to 58°F (14°C)	10 minutes	1 hour
59°F (15°C) to 67°F (19°C)	6 minutes	40 minutes
68°F (20°C) to 85°F (29°C)	3 minutes	30 minutes
86°F (30°C) to 104°F (40°C)	2 minutes	30 minutes

Linear interpolation for intermediate base material temperature is possible.

Cartridge temperature must be between 41°F (5°C) and 104°F (40°C) when in use; except for installations in base material temperatures between 14°F and 23°F (-10°C and -5°C) the cartridge temperature must be conditioned to 50°F (10°C) minimum.

Hole Cleaning Equipment Selection Table for AC200+

Rod Diameter (inch)	Rebar Size	ANSI Drill Bit Diameter (inch)	Brush Length (inches)	Steel Wire Brush ^{1,2} (Cat. #)	Blowout Tool	Number of cleaning actions
			Solid Base Material			
3/8	-	7/16	6	PFC1671050		
-	#3	1/2	6	PFC1671100		
1/2	10M	9/16	6	PFC1671150	1	2x blowing 2x brushing 2x blowing
-	#4	5/8	6	PFC1671200		
5/8	-	11/16	6	PFC1671225	Compressed air	
-	#5 15M	3/4	6	PFC1671250	Compressed air nozzle only,	
3/4	#6	7/8	6	PFC1671300	Cat #8292	
7/8	#7 20M	1	6	PFC1671350	(min. 90 psi)	
1	#8	1-1/8	6	PFC1671400		
-	#8 25M	1-1/4	6	PFC1671450	-	
1-1/4	#9	1-3/8	6	PFC1671450	1	
-	#10 30M	1-1/2	6	PFC1671500		

1. For any case, it must be possible for the steel anchor element to be inserted into the cleaned drill hole without resistance.

An SDS-plus adaptor (Cat. #PFC1671830) is required to attach a steel wire brush to the drill tool. For hand brushing, attach manual brush wood handle (Cat. #PFC1671000) to the steel brush.
 A brush extension (Cat. #PFC1671820) must be used with a steel wire brush for holes drilled deeper than the listed brush length.

Piston Plugs for Adhesive Anchors^{1,2,3}

Plug Size (inch)	ANSI Drill Bit Diameter (inch)	Piston Plug (Cat. #)	Piston Plug
	Solid Base	Materials	
11/16	11/16	08258	
3/4	3/4	08259	
7/8	7/8	08300	
1	1	08301	
1-1/8	1-1/8	08303	
1-1/4	1-1/4	08307	
1-3/8	1-3/8	08305	
1-1/2	1-1/2	08309	

1. All overhead or upwardly inclined installations require the use of piston plugs where one is tabulated together with the anchor size.

2. All installations require the use of piston plugs where one is tabulated together with the anchor size and where the embedment depth is greater than 10 inches.

3. A flexible plastic extension tube (Cat. #08281 or #08297) or equivalent approved by DEWALT must be used with piston plugs.

PERMISSIBLE INSTALLATION CONDITIONS (ADHESIVE)

Dry Concrete: cured concrete that, at the time of adhesive anchor installation, has not been exposed to water for the preceding 14 days. **Water-Saturated Concrete (wet):** cured concrete that, at the time of adhesive anchor installation, has been exposed to water over a sufficient length of time to have the maximum possible amount of absorbed water into the concrete pore structure to a depth equal to the anchor embedment depth.

Water-Filled Holes (flooded): cured concrete that is water-saturated and where the drilled hole contains standing water at the time of anchor installation.

1-800-4 **DEWALT**

Acrylic Injection Adhesive Anchoring System

AC200+

ORDERING INFORMATION

AC200+ Cartridges

Cat. No.	Description	Std. Box	Std. Ctn.	Pallet		
PFC1271050	AC200+ 9.5 fl. oz. Quik-Shot	12	36	648		
PFC1271150	AC200+ 28 fl. oz. Dual cartridge	-	8	240		
One AC200+ mi	One AC200+ mixing nozzle is packaged with each cartridge.					

AC200+ mixing nozzles must be used to ensure complete and proper mixing of the adhesive.

Cartridge System Mixing Nozzles

Cat. No.	Description		Std. Ctn.
PFC1641600	Mixing nozzle (with 8" extension)		24
08281	Mixing nozzle extension, 8" long		24
08297	Mixing nozzle extension, 20" long	1	12

Dispensing Tools for Injection Adhesive

Cat. No.	Description	Std. Box	Std. Ctn.
08437	Manual caulking gun for Quik-Shot		12
08479	High performance caulking gun for Quik-Shot	1	12
DCE560D1	Cordless 20v battery powered dispensing tool for Quik-Shot		-
08494	28 fl. oz. Standard all metal manual tool		-
08496	28 fl. oz. High performance pneumatic tool	1	-
DCE595D1	28 fl. oz. cordless 20v battery powered dispensing tool	1	-

Hole Cleaning Tools and Accessories

Cat No.	Description	Std. Box
PFC1671050	Premium Wire brush for 7/16" ANSI hole	1
PFC1671100	Premium Wire brush for 1/2" hole	1
PFC1671150	Premium Wire brush for 9/16" ANSI hole	1
PFC1671200	Premium Wire brush for 5/8" ANSI hole	1
PFC1671225	Premium Wire brush for 11/16" ANSI hole	1
PFC1671250	Premium Wire brush for 3/4" ANSI hole	1
PFC1671300	Premium Wire brush for 7/8" ANSI hole	1
PFC1671350	Premium Wire brush for 1" ANSI hole	1
PFC1671400	Premium Wire brush for 1-1/8" ANSI hole	1
PFC1671450	Premium Wire brush for 1-1/4" 1-3/8" ANSI hole	1
PFC1671500	Premium Wire brush for 1-1/2" ANSI hole	1
PFC1671830	Premium SDS-plus adapter for steel brushes	1
PFC1671000	Premium manual brush wood handle	1
PFC1671820	Premium Steel brush extension, 12" length	1
08292	Air compressor nozzle with extension, 18" length	1

Piston Plugs for Adhesive Anchors

Cat. #	Description	ANSI Drill Bit Dia.	Std. Bag
08258	11/16" Plug	11/16"	10
08259	3/4" Plug	3/4"	10
08300	7/8" Plug	7/8"	10
08301	1" Plug	1"	10
08303	1-1/8" Plug	1-1/8"	10
08307	1-1/4" Plug	1-1/4	10
08305	1-3/8" Plug	1-3/8"	10
08309	1-1/2" Plug	1-1/2"	10

Piston Plugs for Post-Installed Rebar Connections

-				
	Cat. No.	Description	ANSI Drill Bit Dia.	Qty.
ĺ	PFC1691520	3/4" Plug	3/4	10
	PFC1691530	7/8" Plug	7/8	10
[PFC1691540	1" Plug	1	10
ſ	PFC1691550	1-1/8" Plug	1-1/8	10
	PFC1691555	1-1/4" Plug	1-1/4	10
	PFC1691560	1-3/8" Plug	1-3/8	10
ſ	PFC1691570	1-1/2" Plug	1-1/2	10

www.DEWALT.com

ADHESIVES

Acrylic Injection Adhesive Anchoring System

6		~77775	7555	000000000000000000000000000000000000000
X	4-Cutter	Carbide	Drill	Bits

SDS Max 4-	Cutter Carbide	Drill Bits	
Cat. No.	Diameter	Usable Length	Overall Length
DW5806	5/8"	8"	13-1/2"
DW5809	5/8"	16"	21-1/2"
DW5807	5/8"	31"	36"
DW5808	11/16"	16"	21-1/2"
DW5810	3/4"	8"	13-1/2"
DW5812	3/4"	16"	21-1/2"
DW5813	3/4"	31"	36"
DW5814	13/16"	16"	21-1/2"
DW5815	7/8"	8"	13-1/2"
DW5816	7/8"	16"	21-1/2"
DW5851	7/8"	31"	36"
DW5817	27/32"	16"	21-1/2"
DW5818	1"	8"	13-1/2"
DW5819	1"	16"	22-1/2"
DW5852	1"	24"	29"
DW5820	1"	31"	36"
DW5821	1-1/8"	10"	15"
DW5822	1-1/8"	18"	22-1/2"
DW5853	1-1/8"	24"	29"
DW5854	1-1/8"	31"	36"
DW5824	1-1/4"	10"	15"
DW5825	1-1/4"	18"	22-1/2"

Cat. No.	Diameter	Usable Length	Overall Length 4-1/2"	
DW5502	3/16"	2"		
DW5503	3/16"	4"	6-1/2"	
DW5504	3/16"	5"	8-1/2"	
DW5506	3/16"	10"	12"	
DW5512	7/32"	8"	10"	
DW5517	1/4"	4"	6"	
DW5518	1/4"	6"	8-1/2"	
DW55200	1/4"	10"	12"	
DW5521	1/4"	12"	14"	
DW5524	5/16"	4"	6"	
DW5526	5916"	10"	12"	
DW5527	3/8"	4"	6-1/2"	
DW5529	3/8"	8"	10"	
DW55300	3/8"	10"	12"	
DW5531	3/8"	16"	18"	
DW5537	1/2"	4"	6"	
DW5538	1/2"	8"	10-1/2"	
DW5539	1/2"	10"	12"	
DW5540	1/2"	16"	18"	

111111111

194214142403

0 **SDS+ 4-Cutter Carbide Drill Bits**

Cat. No.	Diameter	Usable Length	Overall Length
DW5471	5/8"	8"	10"
DW5472	5/8"	16"	18"
DW5474	3/4"	8"	10"
DW5475	3/4"	16"	18"
DW5477	7/8"	8"	10"
DW5478	7/8"	16"	18"
DW5479	1"	8"	10"
DW5480	1"	16"	18"
DW5481	1-1/8"	8"	10"
DW5482	1-1/8"	6"	18"

Dust Extraction

Cat. No.	Description		
DWV012	10 Gallon Wet/Dry Hepa/Rrp Dust Extractor DWV9402 Fleece bag (5 pack) for DEWALT dust extractors DWV9316 Replacement Anti-Static Hose DWV9320 Replacement HEPA Filter Set (Type 1)		
DWH050K	050K Dust Extraction with two interchangeable drilling heads		
DCB1800M3T1	1800 Watt Portable Power Station & Parallel Battery Charger with 3 20V Max* 5Ah Batteries and 1 60V Max* Flexvolt® Battery		

Hollow Drill Bits

	Cat. No.	Diameter	Overall Length	Usable Length	Recommended Hammer
SDS+	DWA54012	1/2"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA54916	9/16"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA54058	5/8"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA54034	3/4"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
SDS Max	DWA58058	5/8"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58958	5/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58116	11/16"	24-3/4"	15-3/4"	DCH481 / D25603K
	DWA58034	3/4"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58934	3/4"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58078	7/8"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58001	1"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58901	1"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58118	1-1/8"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58918	1-1/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58114	1-1/4"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58138	1-3/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58112	1-1/2"	47-1/4"	39-3/8"	DCH481 / D25603K

TECHNICAL GUIDE – ADHESIVES © 2018 DEWALT – REV. G

1-800-4 **DeWALT**